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Figure 1: Accurate lip synchronization results for multiple characters can be generated using the same set of phone bigram blend curves.
Our method uses animator-driven data to produce high quality lip synchronization in multiple languages. Our method is well-suited for
animation pipelines, since it uses static facial poses or blendshapes and can be directly edited by an animator, and modi�ed as needed on a
per-character basis.

Abstract

We demonstrate a lip animation (lip sync) algorithm for real-time
applications that can be used to generate synchronized facial move-
ments with audio generated from natural speech or a text-to-speech
engine. Our method requires an animator to construct animations
using a canonical set of visemes for all pairwise combinations of a
reduced phoneme set (phone bigrams). These animations are then
stitched together to construct the �nal animation, adding velocity
and lip-pose constraints. This method can be applied to any charac-
ter that uses the same, small set of visemes. Our method can operate
ef�ciently in multiple languages by reusing phone bigram anima-
tions that are shared among languages, and speci�c word sounds
can be identi�ed and changed on a per-character basis. Our method
uses no machine learning, which offers two advantages over tech-
niques that do: 1) data can be generated for non-human characters
whose faces can not be easily retargeted from a human speaker's
face, and 2) the speci�c facial poses or shapes used for animation
can be speci�ed during the setup and rigging stage, and before the
lip animation stage, thus making it suitable for game pipelines or
circumstances where the speech targets poses are predetermined,
such as after acquisition from an online 3D marketplace.
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Synchronizing the lip and mouth movements naturally along with
animation is an important part of convincing 3D character perfor-
mance. In this paper, we present a simple, portable and editable
lip-synchronization method that works for multiple languages, re-
quires no machine learning, can be constructed by a skilled an-
imator, is effective for real-time simulations such as games, and
can be personalized for each character. Our method associates an-
imation curves designed by an animator on a �xed set of static fa-
cial poses, with sequential pairs of phonemes (phone bigrams), and
then stitches these animations together to create a set of curves for
the facial poses along with constraints that ensure that key poses
are properly played. Diphone- and triphone-based methods have
been explored in various previous works, often requiring machine
learning. However, our experiments have shown that animating
phoneme pairs (such as phone bigrams or diphones), as opposed
to phoneme triples or longer sequences of phonemes, is suf�cient
for many types of animated characters. Also, our experiments
have shown that skilled animators can suf�ciently generate the data
needed for good quality results. Thus our algorithm does not need
any speci�c rules about coarticulation, such as dominance functions
or language rules. Such rules are implicit within the artist-produced
data. In order to produce a tractible set of data, our method reduces



the full set of 40 English phonemes to a smaller set of 21, which
are then annotated by an animator. Once the full animation set has
been generated, it can be reused for multiple characters. Each addi-
tional character requires a small set of static poses or blendshapes
that match the original pose set. Lip sync data needed for a new
language requires a new set of phone bigrams for each language,
although similar phonemes among languages can share the same
phone bigram curves. We show how to reuse our English phone bi-
gram animation set to adapt to a Mandarin set. Our method works
with both natural speech and text-to-speech engines.

Our artist driven approach is useful for lip syncing non-human char-
acters whose lip or face con�guration doesn't match a human's,
which would make it dif�cult to retarget. Animators can gener-
ate a lip animation data set for any character or class of characters,
regardless of the facial setup speci�ed. We demonstrate such an ex-
ample on an animated, talking crab that we acquired from an online
3D content source, and whose facial con�guration does not match
any existing set of lip sync poses. In addition, our method can be
used with any set of facial poses or blend shapes as input, thus mak-
ing it suitable for game pipelines where the characters must adhere
to speci�c facial con�gurations. This differs from many machine
learning algorithms where the retargeting efforts must be done once
the learned data is generated, or where speci�c facial poses are out-
put from the machine learning process, but differ according to the
input data. By allowing the setup of the character to be determined
in advance of generating the lip animation data, our system can be
adjusted to be compatible with any existing lip animation setup,
thus making it ideally suitable for game pipelines. We demonstrate
this capability by using the same facial poses as a commercial lip
animation tool, FaceFX [FaceFX 2012], whose results we can then
directly compare against. In addition, control over our method can
be achieved by reanimating speci�c phoneme pairs (such as L-Oh,
as in the word 'low'). Thus control over various parts of the algo-
rithm are both intuitive and controllable.

It is dif�cult to compare the quality of the results between one lip
syncing method to another, since the models, data set, and charac-
teristics are often different between methods. With some exceptions
[Ma and Deng 2012], few research methods attempt to compare
their own results to other established research methods or commer-
cial results. There are many reasons for this, including the dif�culty
in reproducing exactly other methods and the lack of availability of
data sets. Consequently, comparisons are made to simpler methods
[Taylor et al. 2012]. By contrast, we present a direct comparison
with a popular commercial lip syncing engine, FaceFX [FaceFX
2012], using identical models and face shapes. We thus maintain
that our method generally produces good results with very low re-
quirements, while simultaneously being controllable and editable.

1 Related Work

There are many facial animation techniques, including 2D image-
based methods, and 3D geometry-based methods. A background
on many of these techniques can be found in the survey by Parke
and Waters [Parke and Waters 2008]. However, the focus of this
paper is on lip syncing to audio, which we summarize below.

1.1 Visual Speech Animation

The synthesis of realistic visual speech animations corresponding
to novel text or prerecorded acoustic speech input has been a major
research problem for decades. A common approach is to map one
or more individual phonemes to corresponding viseme and gener-
ate the animation by interpolating the visemes given phoneme se-
quences [Ezzat and Poggio 1998] and demonstrated in a system

using blendshapes [Wang et al. 2007]. However, naively interpolat-
ing viseme sequences tend to generate poor results since it does not
consider co-articulation. Visual speech co-articulation is a phenom-
ena describing that, which shows that a current viseme shape is not
an independent face shape but rather would be affected by adjacent
phonemes. The early work by Cohen et al introduced dominance
functions [Cohen and Massaro 1993; Massaro et al. 2012] as a pa-
rameterization method to deal with co-articulation. Their pioneer-
ing work is followed by more research works aimed to improve the
dominance function model [Cosi et al. 2002; King and Parent 2005;
Cohen et al. 2002]. In their work each parameter curve controls a
time-varying deformation over a small region on the face model.
Although this parameterization method is intuitive to use, it is dif-
�cult to generalize across different faces since a set of parameters
is bounded to a certain facial topology. Therefore a lot of man-
ual effort is required for each new face. Our method parameterized
the face animation as a set of blend curves using a canonical set of
viseme shapes. Therefore the same set of parameter curve can be
applied on different characters as far as they use the same canonical
de�nition for viseme shapes.

Many data-driven methods are developed to learn co-articulation
patterns from animation data. Ma et al learned variable length units
based on a motion capture corpus [Ma et al. 2006]. Deng et al pro-
posed a method that learn diphone and triphones model presented
in weight curves from motion captured data [Deng et al. 2005]. Dy-
namic programming is applied to calculate the best co-articulation
viseme sequences based on speech input. Although their method
can produce natural speech animation with learned co-articulation,
it requires large amounts of motion data for training and the result is
highly dependent on the training data. Cao et al transferred captured
data to a model to synthesize speech motions [Cao et al. 2004]. The
recent work by Taylor et al [Taylor et al. 2012] also introduced a
dynamic visemes method, which extracts and clusters visual ges-
tures from video input of human subjects. To synthesize dynamic
visemes from a phoneme sequence, it looks for the best mapping
through the probability graph learned from visual gesture data and
stitch the viseme sequences together. Their method produces good
results with co-articulation effects but requires signi�cant anima-
tor efforts to setup around 150 visemes animations for each rigged
characters face. By contrast, our method requires only a small set
of static facial poses for each character.

Blendshape is a widely used technique due to its simplicity, when
3D shapes are interpolated and blended together in customized
ways. One of the drawbacks when using blendshapes is the dif-
�culty in de�ning a set of face shapes that are orthogonal to each
other. This in turn causes the in�uence from one face shape to de-
grade other shapes. [Lewis et al. 2005; Deng et al. 2006a] provided
a method to avoid interferences. Human performance also provides
a way to produce high quality and realistic facial animations. Wa-
ters and coworkers [Waters and Terzopoulos 1991] applied radial
laser scanner to capture facial geometry from the subject and used
the scanned markers to drive the underlying muscle system. Chai
et al [Chai et al. 2003] used optical �ow tracking to capture the
performance from a subject to drive facial animations.

1.2 Expressive Facial Animation

Expressive facial animations, including eye gaze and head move-
ments, would greatly enhance the realism of a virtual character.
Cassell et al developed rule based automatic system [Cassell et al.
1994]. Brand et al [Brand 1999] constructed a facial internal
state machine driven by voice input using Hidden Markov Model
(HMM). Deng et al extended the work in co-articulation model
[Deng et al. 2005] and added the expressive facial motion learned
from motion data to wrap it along with speech motion [Deng et al.



2006b]. Cao et al used learning techniques to generate separate
emotion components from speech [Cao et al. 2003]. More recent
research has used test-to-speech(TTS) to drive expressive speech
[Mattheyses et al. 2013].

1.3 Software

FaceFX is a lip syncing software that has been widely adopted in
many video games and simulations. It takes a speech audio as input
and generate a set of blending curves. It then additively combines
a set of simple component animations based on blending curves to
produce facial animations. In this paper we will compare our result
with its result based on lip-syncing accuracy and naturalness. In
addition to prerecorded audio �les, we also make use of text-to-
speech (TTS) engine such as Microsoft TTS [Huang et al. 1997],
Fesitival [Black and Taylor 1997], and Cereproc [Cereproc 2012]
to produce mid-quality speech audio and phoneme timing on the
�y.

Our method differs from many of the existing machine learning
methods in that the data can be constructed and modi�ed by a
skilled animator, and therefore does not require any performance
capture or speech corpus. In addition, each phone bigram generated
by the animator has local effects and can be edited or changed indi-
vidually without affecting other parts of the system. Such process
can be repeated for new characters, and thus the fact that our system
can be changed and modi�ed easily represents a strong advantage
over machine learning methods which cannot learn and change the
results for individual sounds per character as our system can.

2 Method

Our method involves two phases; an of�ine phase where an an-
imator constructs animation curves associated with all pairwise
combinations of phonemes, and a runtime phase that produce the
speech animations by stitching, smoothing and constraint satisfac-
tion based on the input timings of the phonemes.

2.1 Of�ine Phase

Our goal is to construct a set of animations that are associated with
pairs of phonemes. We choose phoneme pairs as our canonical unit
of animation since pairs of phonemes allow for coarticulation ef-
fects that are not possible by associating animation with individual
phonemes. Diphones are commonly used during machine learn-
ing techniques, which represent timings between the middle of one
phoneme and the next. Animators construct phone bigrams, which
represent the timings from the start of one phoneme to the end of the
following one. We choose phone bigrams, and not diphones, since
an animation of a phone bigram is intuitive, whereas an animation
of a diphone has no intuitive representation. Phone bigrams can be
constructed by animating a short word with a single syllable that
represents the two phonemes. For example, when animating the
phone bigram for L-Oh, an animator can create an animation that
represents the word 'Low'. By contrast, there is no intuitive rep-
resentation of the mouth movements for a diphone, which would
require the animator to start the motion from the middle of the 'L'
sound to the middle of the 'O' sound. By using phone bigrams,
animators are able to create better quality set of animations.

We also choose phoneme pairs, rather than combinations of three
phonemes or higher order sequences in order to reduce the amount
of data needed to be produced by animator. We expect that better
results could be obtained by animating or learning combinations of
three phonemes or even longer sequences. However, our goal is to

English
phoneme

Common
Phoneme Set

Examples

ae, ah, ax ah cat, cut, ago
aa aa father
ao ao dog
ey, eh eh ate, pet
er er fur
ih, iy ih feel, �ll, debit
w, uw, uh w with, too,

book
ow ow go
aw aw foul
oy oy toy
ay ay bite
h h help
r r red
l l lid
s, z z sit, zap
sh, ch, jh, zh,
y

sh she, chin, joy,
pleasure, yard

th, dh th thin, then
f, v f fork, vat
d, t, n, ng d dig, talk, no,

sing
k, g kg cut, gut
p, b, m bmp put, big, mat

Table 1: Forty English phonemes mapped to our common set of
phonemes. The left column lists the full set of English phonemes.
The right column all the canonical visemes and the second right
column lists all the pairwise phoneme combinations for the given
phoneme schedules.

identify a tractable set of data that can be quickly generated so that
high quality lip syncing can be produced easily.

2.1.1 Phoneme Selection

Phonemes differ from each other according to their sounds.
However, similar-looking facial movements can produce multiple
phonemes. For example, a person will make a similar-looking face
of folding their lips together when producing the 'b' and 'p' sounds.
Thus, in order to further reduce the amount of data necessary for our
method, we map the 40 English phonemes [Wells et al. 1997] into a
smaller phoneme set, which we call the Common Phoneme Set, in
turn greatly reducing the number of pairwise phonemes that must
be produced during the of�ine phase. Table 1 shows the mapping
to our common set of phonemes.

The mapping of phonemes (for example, mapping all 'b' and 'm'
sounds to the common 'bmp' phoneme) somewhat reduces the
subtleties that result from the differences between those sounds.
However, our method allows for the inclusion of additional de-
tail as needed by remapping the phonemes. Thus, the 'b' and 'm'
phonemes could be separated, resulting in an additional number of
phone bigrams to animate.

A language withn phonemes usesn2 pairwise phoneme com-
binations. Thus, English has 40 phonemes and402 = 1600
pairwise phoneme combinations. By contrast, our reduced Com-
mon Phoneme Set of 21 phonemes contains212 = 441 pairwise
phoneme combintions. Thus, animators only need to generate ap-
proximately 25% of the animations that would ordinarily be con-
structed if the entire English phoneme set were used.

Using this reduced phoneme set, we generated phone bigrams from



Rank Common Set Phoneme PairPercentage
1 ah - d 4.62
2 d - ih 3.44
3 ih - d 2.68
4 d - d 2.64
5 d - ah 2.40
6 eh - d 1.83
7 d - w 1.66
8 ah - r 1.58
9 ih - w 1.50
10 d - z 1.43
11 ih - z 1.37
12 ih - kg 1.32
13 aa - d 1.27
14 z - ih 1.22
15 r - ih 1.21
16 th - ah 1.19
17 z - d 1.16
18 kg - ah 1.15
19 ah - l 1.10
20 z - ah 1.04
21 ah - bmp 0.98

Table 2: Frequency of Common Phoneme Set. Phoneme pairs gen-
erated from a TTS engine on a corpus of approximately 200 utter-
ances.

a corpus of approximately 200 utterances of varying length, from
a single word, to utterances composed of several sentences. Ta-
ble 2 shows the frequencies of the Common Phoneme Set pairwise
phoneme combinations when generated from the Microsoft TTS
Engine:

Note that thed Common Phoneme Set phoneme appears frequently,
since it encompases four phonemes:d, t , n, ng. In addition, 104
of the 441 Common Set phone bigrams never appeared, and thus,
nearly 99.1% of the phone bigrams could be generated from the �rst
283 most common phone bigrams. The phone bigram distribution
is shown below in Figure2. It is possible that different phoneme
sequencers would generate slightly different results based on their
own analysis of words and their mapping to the phonemes. How-
ever, we would expect them to be mostly aligned with our results,
since to do otherwise would indicate a lack of synchronization with
the SAMPA [Wells et al. 1997] phoneme set.

Figure 2: Distribution of Common Phoneme Set phoneme pairs
using a text-to-speech engine. Horizontal axis shows the number
of pairwise phonemes. Vertical axis shows the percentage of all
pairwise phonemes.

2.1.2 Facial Pose Selection and Phone Bigram Animation

Our method sequences a series of animations that are associated
with our Common Phoneme Set of phoneme pair. Therefore instead
of having animators create animations from scratch, we choose to
represent phone bigram animations as a set of blend curves using
a canonical set of face poses. This not only greatly simpli�es the

task for animators, but also allow our animations to be portable to
different characters. As far as the new character has the same set
of canonical face poses, our phone bigram curves can be applied on
that character to generate high quality lip syncing animations. To
produce a Common Phoneme Set of phone bigram animations, ani-
mators construct facial movements by combining several static face
poses over time using a curve editor or similar tool. The animation
curves are normalized, and will be timewarped over the length of
the phone bigrams.

In order to reduce efforts from animators when creating blend
curves, we develop a novel phone bigram curve editor which would
assist the user to quickly create curves and evaluate the quality of
resulting facial animations. As shown in Figure3, our editing tool
[Shapiro 2011] allows the animator to choose pairwise phoneme
combinations and edit their corresponding blend curves. The an-
imator speci�es a piecewise linear curvel k

j (t) for each face pose
f k and for each phoneme pairdj . The linear curve represents the
control curve for a smooth B-spline curveck

j (t), which will be use
to adjust the in�uence of posef k for a speci�c phone bigramdj .
Here each posef k represents displacements from neutral pose and
therefore the weights

P
k ck

j (t) does not necessarily sum to one. It
can also generate a speech animation for a speci�c sentence auto-
matically from a TTS engine or from a prerecorded audio �le. The
sentence will be analyzed on the �y and transformed into the in-
dividual phone bigrams. We show an example of a set of curves
associated with the F-Ah phone bigram (for example, when saying
the the beginning of the word 'fat'). After the animator updates the
blend curves for a speci�c phone bigram, he can immediately eval-
uate its quality in a speech animation by typing words or sentences
that contain the phoneme pair. This feedback can also help the an-
imator to quickly identify the subset of phone bigrams that need
improvements. By testing various words and sentences, problem-
atic results can be effectively found and provide informations for
the animator to �ll in missing phone bigrams or improve existing
ones.

Figure 3: Curves for F-Ah phone bigram. The animator selects
three facial poses; FV, open and wide, and constructs animation
curves over normalized time. The animation can be directly played
on the character, or the character's lip animation could be driven
using TTS or recorded audio.

Since we rely on blend curves to produce character independent
phone bigram animations, it is crucial to choose a good set of
canonical face poses. In our method, we choose a set of facial poses
that allows the generation of nearly any facial expression through
various combinations of the facial poses. For compatibility with ex-



isting pipelines and for purposes of comparison, we chose the same
facial poses that are used for the FaceFX software [FaceFX 2012]
and detailed in Figure4. These shapes include 5 face shapes, and
3 tongue shapes. We expect that any canonical set of facial poses
could be used, since the animator decides how and when to activate
the various components. The facial poses need to be able to model
sophisticated facial movements such as pursing the lips and tongue
movements.

Figure 4: From �rst to the end: fv, open, pbm, shch, w, wide. In
addition, three tongue positions: up, down and back are used as
well as a neutral pose.

The animators construct curves in normalized time. The phone bi-
gram animation will be used by the realtime algorithm by time-
warping the animation curve over the length of each phone bigram,
detailed in the section below. Each language, such as English, re-
quires its own set of animations, although other language sets can
reuse the same phone bigram animations, since many phonemes are
shared between languages.

2.2 Runtime Phase

Figure 5 shows a �ow chart for our runtime system. The run-
time component operates on sequence of phonemes generated from
a phoneme scheduler. The phoneme scheduler can be extracted
directly from a TTS engine, extracted of�ine from recorded au-
dio, or online via various phoneme translator tools. We have
tested our TTS path using the Microsoft [Microsoft 2012], Cere-
proc TTS [Cereproc 2012], and Festival [Black et al. 1998] TTS
engines. Recorded audio can be extracted using various commer-
cial [FaceFX 2012] or noncommercial tools [Huggins-Daines et al.
2006; Sutton et al. 1998]. The details of such phoneme schedul-
ing are outside of the scope of this work. Our system expects a
sequence of English phonemes and timings for each phoneme.

2.2.1 Curves Stitching and Smoothing

Our method then groups the sequence of phonemes into phoneme
pairs, and maps those to the Common Phoneme Set. As shown
in Figure 6, assuming the input phoneme schedulesp0 ; p1 ; :::pn

occur at timest0 ; t1 ; :::t n . Our method �rst constructs a se-
quence of phoneme pairs consisting of adjacent pairs of phonemes
(p0 ; p1); (p1 ; p2); :::(pn � 2 ; pn � 1) and their corresponding time
span(t0 ; t2); (t1 ; t3):::; (tn � 2 ; tn ).

Each phoneme pair(pi ; pi +1 ) is also associated with a set of
phone bigram curvesck

i (t)f t i � t � t i +2 g for each canoni-
cal face posef k . We stretch or compress the curves according
to the time span of the phoneme pair to generateck

i (t). We then

stitch the overlapping curves for the same face posef k over ad-
jacent time spans to produce one single continuous blend curve
ck (t) f t0 � t � tn g. The stitching process eliminates overlap-
ping areas between adjacent curvesck

i and ck
i +1 by retaining the

curves with largest value, as shown in Figure7. For example,
ck (t) = max (ck

i (t); ck
i +1 (t)) f t i +1 � t � t i +2 g. We choose the

maximum value over linear blending or averaging in the overlap-
ping area so that the original information is preserved in the result-
ing curves to activate face poses. Applying other blending methods
may damp the curves and produce undesired lip movements during
transition.

We also perform a smoothing pass over each curve using a user-
speci�ed window to scan through temporal domain and �nd local
maximas. Figure8 shows the resulting curves after the smoothing
process. Here we de�nes a sliding window, with its size2tw de�ned
by user. The smoothing window will be slideing over the curve
ck (t) from t0 to tn and detect the local maximums forck (t). If at
any time instantt there are two or more local maximasck (ta ) and
ck (tb) inside the window fromt � tw to t + tw , we will smooth out
the curve values betweenta andtb by interpolating two maximas
ck (ta ) andck (tb) with a spline curve. Speci�cally, sinceck (ta )
andck (tb) are the values of spline curves associated with piecewise
linear curves whose values arel k (ta ) andl k (tb) at timeta andtb,
the new spline curve can be obtain by linearly interpolatingl k (ta )

andl k (tb) such thatl k (t) = ( t b � t ) l k ( t a )+( t � t a ) l k ( t b )
t b � t a

from timeta

to tb. This new linear curve thus de�nes a updated values forck (t)
from ta to tb. Intuitively, this process smoothes out the ”valley”
between two maximas and therefore helps reduce high frequency
lip movements that are not natural for a speech animation.

2.2.2 Constraint Satisfaction

Since facial poses are activated based on parametric values, any
two poses could be arbitrarily combined together to form a new
face shape. However, certain poses, when activated simultane-
ously, would produce unnatural results. For example, the face pose
for 'open' viseme should not be activated along with the pose for
'bmp'. Since one pose is open mouth and the other is close mouth,
combining them together may cause interference and cancel each
other. This can cause important information being eliminated from
the resulting facial motion. To �x this problem, we added the con-
straints between face pose pair to �lter out undesired poses. A con-
straint thresholdC(a; b) is de�ned for each pose pair(f a ; f b). A
priority value for bothP(a) andP(b) is also de�ned for each face
posef a andf b to determine which pose should have its paramet-
ric value reduced during con�ict. The thresholdC(a; b) determines
whether the two posesf a andf b may interfere with each other, and
it is activated whenca (t) + cb(t) > C (a; b). Once the constraint
is activated, the parametric value from the lower priority curve is
reduced to satisfy the constraintca 0(t) + cb0(t) � C(a; b). As-
sumingP(a) > P (b), we de�ne ca 0(t) = ca (t) and cb0(t) =
cb(t) � (C(a; b) � ca (t) � cb(t)) . Figure9 shows the resulting
curves after constraint adjustments. This simple heuristic ensures
that the incompatible curves will not affect each other and thus it
improves the quality and expression of resulting animations. The
method is not restricted to a standard set of face poses, it can be
extended to work with any arbitrary, non-conventional sets of face
poses since the animator can de�ne suitable thresholds and priority
values based on the given face pose set. In our example, we found
that setting the constraintsC(open; F V) = C(open; pbm) =
C(open; ShCh) = 0 :5, C(a; b) = 2 :0 for all other face pose pairs,
and prioritiesP(open) < P (W ) < P (wide) < P (ShCh) <
P(F V ) < P (pbm) work well under standard FaceFx face pose
set.



2.2.3 Parametric Speed Limits

To produce natural lip syncing animation, a character should only
move his lips with a reasonable speed. However, the animator may
create a bigram curve with high slope and the time warping could
also compress the curve to be excessively sharp. This can cause
fast activation or deactivation of various static face poses or shapes,
resulting in popping or similar artifacts. We cap the parametric
speeddl ( t )

dt of piecewise linear curvel(t) by a valuelmax . This
prevents overly fast changes to any shape, and is intended to track
the speed at which a person's face can be changed (for example,
how quickly the mouth can be opened or closed). We have found
that values wherelmax = 15 provides reasonable results. Figure10
shows the resulting curves after limiting the parametric speeds.

Once the speed limit phase has been completed, we transfer the
curves to our animation system, which blends the facial poses or
blendshapes according to their activation values dictated by the
curves.
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Figure 5: Runtime phase �ow chart. A phoneme scheduler pro-
duces phonemes and their respective timings. Animations previ-
ously created by an artist are associated with each phone bigram
animation. Each facial pose then stitches together those anima-
tions, runs a smoothing process, speed and pose constraints. The
�nal curves are animated by the system.

Figure 6: Curve visualization from our interactive tool. First step:
Curves of the phone bigram animations from the 'open' viseme are
shown and placed together on the timeline (shown in red). Phoneme
boundaries are shown as vertical lines. Time axis is shown in the
�rst row of the black boxes underneath the curves. Phonemes and
their corresponding times are shown in the second and third row.

2.2.4 Editing

By constructing animation curves that are driven by a �xed set
of shapes or poses, the animator constructs a data set that can
be reused on other characters which use similar facial poses or

Figure 7: Curve visualization from our interactive tool. Second
step: Overlapping curves are stitched together;parametric values
of curves are compared in the overlapped regions and only the
ones with largest values are retained (shown in blue). The origi-
nal stitched curves from previous step are shown in green.

Figure 8: Curve visualization from our interactive tool. Third step:
The stitched curves are smoothed by �nding local maximums with a
sliding window through temporal domain. The valleys of the curves
are removed by connecting two local maximums inside the sliding
window. The smoothed curves are shown in yellow.

blendshapes. Thus, during the of�ine phase, the animator creates
character-independent animations. In addition, our method is well-
suited for an animation pipeline since there are no black-box com-
ponents whose results are dif�cult to interpret or modify. Speci�c
segments of the animations can be directly mapped back to their
originating phone bigrams and subsequently changed. In addition,
character-speci�c animations can be added to the original set of
phone bigrams curves to adjust the motions per character. Thus, our
method allows two types of adjustments; changing the static poses
or blendshapes, as well as the changing of speci�c phone bigram
animations on a per character basis.

3 Study

It can be dif�cult to evaluate the relative quality of various lip sync-
ing algorithms against each other because of the dif�culty in im-
plementing each solution and the supporting data that is needed,
such as character models, rigs and con�guration parameters. Thus,
most lip syncing algorithms are typically indirectly compared with
each other taking into account those differing aspects. However, we
are able to compare our results directly with a popular commercial

Figure 9: Curve visualization from our interactive tool. Fourth
step: The curves are adjusted by enforcing the constraints between
each face pose pairs. Con�icted face pose curves are adjusted ac-
cording to their priority values. The resulting curves after adjust-
ments are shown in cyan.



Figure 10: Curve visualization from our interactive tool. Fifth
step: The curves are further adjusted to satisfy the speed limits. The
slopes of curves are reduced if their parametric speeds are over a
user-de�ned threshold. The �nal curves are shown in magneta.

lip syncing solution; FaceFX. For our experiment, we use the same
character, the same phoneme scheduler, and we construct phone
bigram animations using the set of FaceFX static poses. When pro-
ducing results from our algorithm, the FaceFX phonemes are then
mapped to our Common Phoneme Set. Thus our algorithm differs
from the results in FaceFX only in the interpretation and transla-
tion of phonemes into animation curves. Therefore we can directly
compare the two methods.

3.1 Method: Comparison With Other Methods

We performed a study comparing the results from both algorithms.
The study includes 4 characters; one cartoon character, one high
quality (near photo-realistic) character, one medium quality female
character and one medium quality male character as shown in Fig-
ure 11. We captured 10 movie clip pairs for each character, each
pair is one random utterance from the pool generated using our
method and using FaceFX. A total of 80 people participated in the
study with 20 observers assigned to each character's 10 movie clip
pairs, so 200 choices are made for each character's lip animation
performance. The positioning of the movie clip inside a pair is ran-
domized.

Figure 11: The four characters used in our study (top left) a car-
toony character, (top right) a high quality character, (bottom left)
a medium quality male character, (bottom right) a medium quality
female character.

The survey was done on Amazon Mechanical Turk [Amazon 2012]
asking observers to choose the preferred clip between the paired
clips as well as state the strength of their preference, using a scale

from 1(weak) to 5(strong). Subjects were asked to choose based
on the general performance of the lip animation accuracy and nat-
uralness. Accuracy indicates that the mouth con�guration is syn-
chronized with the words heard from the audio. The higher the
accuracy, the more you can understand what the character is saying
by just reading the lip syncing even without sound. Naturalness in-
dicates closely the mouth con�guration resembles that of a human's
during speech.

3.2 Study Results

All the results are shown in Figure12. Our method is preferred
over FaceFX with 47%, 34%, 23%, 39% stronger preference re-
spectively for cartoony character, high quality character, medium
quality male character, medium quality female character and there's
a signi�cant different using chi-square goodness of �t test on pref-
erences,� 2

(2) = 44 :14, p < : 005; � 2
(2) = 23 :12, p < : 005;

� 2
(2) = 10 :58, p < : 005; � 2

(2) = 30 :42, p < : 005. When it comes
to average strength of preferences, our method versus FaceFX is
4:03=3:70, 3:97=3:80, 3:54=3:60, 3:62=3:7 respectively.

3.3 Study Discussion

As expected, the results show our method is favored more by the
participants across all types of characters. Participants that pre-
ferred our technique preferred it on average at greater than medium
strength, with a preference strength that is greatest in the case of the
cartoon character(4.03) and high quality character(3.97). Interest-
ingly participants that preferred FaceFX, though fewer in number,
also preferred it on average greater than medium strength. This
suggests the need for a follow-on study where we tease apart what
factors are leading to these judgments across techniques as well as
across character types. Speci�cally in reference to our technology,
there is a question of why the cartoony and high quality characters
have stronger preferences than the medium quality. Is it just the
quality of the character or is there an interaction between character
quality and the realization of the visemes?

4 Discussion

In this paper, we present a lip syncing method that can achieve
high-quality results using only artist-driven data. We observe that
only phoneme pairs are needed, and that higher-order phoneme se-
quences are not necessary for generating reasonable synchronized
lip movements with audio. We also observe that artist-designed
animation curves work well at run-time to synthesize high qual-
ity speech animations, and that machine learning is not necessary.
A key advantage to our method is that in can be constructed from
any set of static facial poses or shapes. This allows the construc-
tion of lip animation for non-human characters using non-standard
face poses, as well as allowing the construction of character face
rigs separately from the animation, since the facial setup needed
can be determined in advance, and does not have to be explicitly
retargeted.

We also demonstrate that such a method can be effective on a
range of character styles, including cartoon-like and realistic look-
ing models. High levels of facial realism are becoming increasingly
popular, and thus spurring the need for animation methods suitable
for such levels of �delity.

4.1 Data-Driven Methods

We observe that many previous methods attempt to solve the lip
syncing problem by extracting co-articulation effects from captured



Figure 12: Comparison between our method and FaceFX using cartoony, high quality, medium quality characters. (Left) preference com-
parison (right) average strength of preference comparison. We use Amazon Mechanical Turk to collect viewer ratings from 80 participants.

data. The goal of these methods can be considered as generat-
ing a correct facial animation for each diphone or triphone com-
bination through either heuristics such as dominance function or
through machine learning methods. Therefore on a higher level,
they attempt to achieve the similar goal as our method to �ll out
the phoneme pair or phoneme trio (diphones/phone bigrams, or tri-
phones/phone trigrams) tables to account for co-articulations.

The limitation with data-driven methods is that there is no guaran-
tee that all the required combinations exist or could be extracted
effectively in the training data. Therefore the missing combinations
would directly affect the quality of resulting animations. More-
over, there is no easy way to modi�ed the learned model to account
for missing combinations. The goal of our method is to provide
a transparent framework for the animator to explicitly �ll out the
phoneme pair/diphone/phone bigram tables. Thus the animator has
direct control over the quality of resulting speech animations. Note
that although we did not choose to solve the problem via data-driven
methods, our framework can be extended to make use of captured
facial animations. Diphone curves, instead of phone bigrams, can
be extracted from captured animations by �tting the animation data
with canonical face poses.

4.2 Of�ine Data Generation

Our of�ine phase requires an animator to generate 441 short anima-
tions for the English language, which can be used by any charac-
ter that utilizes the same speech targets used during the animation
generation phase. Our animators were able to generate a single
phone bigram animation in just a few minutes. Our supplemental
video shows an example of generating such animations. Thus, if
we conservatively estimate that each phone bigram animation takes
5 minutes to generate, an entire language set can be generated in
approximately441 � 5 = 2205 minutes= 37 :5 hours. Thus, a
new language data set can be generated by a single animator using
standard tools in less than 1 week. This language data set can be
used for all characters which utilize the same static facial poses. In
addition, we provide the English language data set openly to the
community1 so that others may use it directly in their experiments
or works, thus further lowering the barrier to implementation for
this method.

1http://smartbody.ict.usc.edu

In addition, since nearly 25% of the Commone Phoneme Set
phoneme pairs never appeared in our speech corpus, a mostly com-
plete animation set in English can be generated in 75% of that time,
or around 3 days. Short sentences can require around 30-40 unique
phoneme pairs to be annotated, which typically take a only a few
hours to construct. Thus, our lip sync method can be tested on en-
tirely new 3D characters that have distinctive facial poses or shapes
in a relatively short amount of time.

4.3 Con�gurability

A key advantage to our method is the con�gurability of the facial
setup to the lip syncing setup. Any set of facial poses can be used
to construct a language set which will be effective for all characters
that use the same matching facial poses. Machine learning methods
generally dictate the facial setup needed based on the learned data;
for example, in generating shapes based on a statistical analysis
such as PCA. Our method can adopt to any set of input data. This
can be effective when the facial requirements have been dictated to
the animator, such as when acquiring models from a 3D market-
place where the facial poses have alreay been established. This is
also useful for non-human characters whose facial con�gurations
either don't match a human's or contain a different set of poses that
activate various non-human capabilities. With our method, it would
be possible to construct a different phone bigram animation set to
match any standard lip syncing con�guration, thus allowing direct
compatibility with other lip syncing setups.

We purchases a rigged crab model from an online marketplace [Daz
2013] which contained several non-standard facial poses, such as
'bare teeth', 'frown', 'smile', 'mouth open', 'mouth OO' and var-
ious tongue positions, such as those seen in Figure13. We then
constructed phone bigrams necessary to animate the crab, since
our method allows the generation of such animation for use in lip
synching from any set of facial poses. Our supplementary video
shows the results. Note that we are not performing any remodeling
or rigging changes in order to create the lip sync data set.

In addition, phoneme pairs can be individually identi�ed and re-
placed as needed on a per character basis. These phoneme pairs
are easy to identify, since their effect can be scene at the times cor-
responding to the phoneme activation. As mentioned above, this
enables the partial construction of a lip sync animation set for test-
ing purposes, without having to complete the entire set (for exam-



Figure 13: Some face poses from cartoon crab acquired from an online marketplace.Our method is able to use any set of facial poses to
construct a lip animation data set.

ple, to preview the quality of the animation on a single sentence),
since the parts of the lip sync that need to be consructed are readily
indenti�able from their phoneme schedule.

Recent work by Taylor et al [Taylor et al. 2012] have also utilized
hand-crafted animations to generate lip sync data. Note that our
method requires only a small set of static facial poses, while their
method requires the construction of 150 short animations per char-
acter. We believe that the quality of our results are comparable to
theirs while requiring over an order of magnitude less data per char-
acter.

4.4 Multilanguage Efforts

Our method can operate on multiple languages by creating a new set
of animations based on the phonemes for the language or reusing
existing phone bigram animations. We were able to generate a
Mandarin phone bigram animation set by mapping the phonemes
associated with Mandarin pinyin [Zein 2012] to the our Com-
mon Phoneme Set in English, then adding one additional phoneme
unique to Mandarin. The additional phoneme required adding 43
additional diphone animations, which were generated in less than
one day. Thus our Mandarin lip synchronization could be gener-
ated in a short amount of time. We expect that other languages
could be added through similar means.

4.5 Direct Method Comparisons

We were able to compare our method directly with FaceFX using a
nearly identical pipeline. We do not claim that our method yields
superior results to all other methods, but rather that our results are
comparable to many others that have much larger requirements.
Other methods that attempt to quantity the quality of animation are
limited to learning based methods [Ma and Deng 2012] or compar-
isons between the original data and the reconstructed data, which
are not applicable to animator-driven methods. McGurk studies
[Cosker et al. 2005] can be performed to see how the McGurk effect
on real humans compares to that of synthesized speech. Likewise,
noise studies where words are randomly removed from utterances
and must be recovered by reading lips can help judge the quality of
the articulation. We believe that the best criteria for comparison is
side-by-side comparison in subjective studies. We believe that our
method is accessible and simple enough and adaptable to be used
for comparison from future research.

4.6 Limitations

Our method does not address the issue of emotional content dur-
ing speech. Many recent research works have identi�ed expressive
speech as a more interesting problem than simple lip animation,

and thus have avoided the problem of generating high quality lip
animation on its own by pursuing high quality emotional facial per-
formances, presuming that a high quality emotional facial perfor-
mance would include a high quality lip sync result. In doing so,
however, there has been no consensus among the research commu-
nity regarding the best lip sync methods for 3D characters. Lip
animation independent of facial expression remains an important
component of many games and simulations, as well as for methods
that use the upper face as a means to express emotional content.

We anticipate that the use of phone trigram or triphones (or longer
sequences of phonemes) would result in slightly better results, but
would require too much data to be annotated by an animator. Tri-
phones would requirep3 animations, wherep is the number of
phonemes in our Common Phoneme Set. Thus, manually annotat-
ing phone trigrams or triphones would make our method unwieldly.
Also, slightly better results could be obtained by expanding the
Common Phoneme Set. For example, separating the 'b' and 'm'
phonemes. Our selection of the Common Phoneme Set is based on
general practices and expert knowledge within the animation com-
munity.
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